
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Investigating dense body surface electrode
data for non-invasive detection of

intracardiac arrhythmia drivers

Lukas Tenbrink



DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Investigating dense body surface electrode data for
non-invasive detection of intracardiac arrhythmia

drivers

Untersuchung dichter
Körperoberflächen-Elektroden-Daten für

non-invasive Detektion von
Herzrhythmusstörungs-Treibern

Author: Lukas Tenbrink
Supervisor: Prof. Dr. Daniel Cremers
Advisor: Dr. Philip Häusser
Submission Date: 15.5.2021



I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.5.2021 Lukas Tenbrink



Acknowledgments

This thesis is the result of long hours of work, close collaboration with and support
by many parties. In addition, many methods are presented that build on top of years
of previous research. It would not have been possible to complete this alone.

First and foremost, I’d like to thank my advisors, Philip and Peter, for their endless
valuable insights and advice. A lot of knowledge about electrographic flow originates
from them, and none of this research would have been possible without it. I’d also like
to thank Prof. Cremers for facilitating this thesis.

Data from dense body surface electrode configurations is not easy to come by. I’d
like to thank the folks from Klinikum der Uni Müenchen for our excellent collaboration
and their tireless efforts in gathering data for the prospective dataset. It has been of
great use in formulating hypotheses and finally evaluating them in this thesis. An
additional thanks goes out to Ajax Health, who kindly provided me with the second
dataset. Sourcing from two datasets for optimization and analysis was of great help.

I’d also like to thank my colleagues at Ablacon and AtriomX for providing frame-
works and being excellent discussion partners for technical questions.

Finally, I’d like to thank my proof readers for their comments and advice. I truly
appreciate the patience!



Abstract

Atrial Fibrillation is the most common arrhythmic disorder of the heart. If left untreated,
it can lead to stroke, hospitalization, and death. Effective treatment requires lengthy
and costly interventions, yet about half of the patients experience a recurrence in less
than a year if the gold standard procedure, pulmonary vein isolation, is performed. A
subset of recurrent patients require personalized treatment, which currently can only
be provided in specialized centers.

Currently, no meaningful stratification of patients can be performed prior to inter-
vention. Previous studies have often focused on clinical history, single-lead electrocar-
diograms, or computed tomography-based technologies.

I hypothesized that a novel approach from intracardiac atrial fibrillation mapping,
electrographic flow, may be suitable for this task. In this thesis, I present an algorithm
capable of deriving knowledge about intracardiac activity from electrodes placed on
a patient’s torso. I test my hypothesis by examining several modalities. First, the
discriminability between individual patients. Second, the discriminability between
healthy patients and patients with atrial fibrillation. Third, the predictive power
of electrographic flow for spontaneous termination during ablation and long-term
recurrence of atrial fibrillation.

The results show that the presented methods perform well in all tasks, with an
exception of long-term recurrence prediction. Here the results are inconclusive and
a larger-scale study may be needed. I conclude that electrographic flow is a suitable
method to map atrial fibrillation on the body surface. Hereby, this work can hope-
fully contribute to a cost-effective assessment and meaningful stratification of atrial
fibrillation patients before ablation.
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1 Introduction

Atrial Fibrillation (AFib) is the most common arrhythmic disorder of the heart, occurring
in about 1.5% to 2% of the general population [Cam+12] and in nearly 10% of those
over 80 years of age [Kan+98]. It is strongly associated with adverse clinical effects such
as stroke, hospitalization and death [Ste+01; Fri+03; WMC03]. AFib stands in contrast
to the healthy rhythm of the heart, Sinus Rhythm (SR), and other arrhythmic disorders
like atrial flutter.

During AFib, the heart beats irregularly and faster than usual (tachycardia), while
the atria are in a constant state of activity. The Sinoatrial (SA) node, which normally
regulates the heart rate, is suppressed. AFib patients are often classified as either
paroxysmal or persistent. For a classification of paroxysmal AFib, the patient must
experience AFib only in short, intermittent intervals (termination in < 7 days [Cal+17]).
In contrast, patients with persistent AFib experience AFib most of the time. AFib is a
progressive disease: over time, paroxysmal AF worsens to persistent AF [Pad+17] if left
untreated. Persistent cases account for 75% of observed AFib patients [Cal+17].

SR can be restored with a procedure class called Cardioversion (CV), a common
implementation of which is electrical CV. Here, a strong impulse is used to depolarize
all the tissue in the heart at once. Electrical CV has a success rate — restoring SR
in the patient — of about 65% [Kup+09]. However, usually AFib within days to
weeks. Therefore, as a proxy to AFib treatment success, often other endpoints are used
— most commonly ≥ 12-month AFib recurrence, adverse clinical effects (including
mortality), and Quality of Life (QOL). CV has a 12-month recurrence of approximately
85% [Sin+05]. This makes it an unsuitable treatment strategy for most patients when
used alone. However, because of its high success rate of immediate conversion, it may
be useful if SR can be maintained by other means.

The two most common treatment strategies for maintaining SR are Antiarrhythmic
Drugs (AADs) and Catheter Ablation (CA). With current methods, they promise
comparable success rates. The recent CABANA [MD+19; Mar+19] study examined
multiple endpoints in a randomized controlled trial to compare contemporary clinical
effectiveness. For AAD and CA, respectively, a 3-year recurrence of 69% vs 50% and
all-cause mortality of 5.3% vs 4.7% were found. Additionally, they reported significant
improvements of QOL in CA over AAD. The study largely confirmed previous smaller
studies [Mar+18; Mor+14; Pac+13; Wil+10; Cos+12]. Currently, the European Society of
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1 Introduction

Cardiology (ESC) recommends patient choice [Cam+12] as the primary indication for
an AAD versus CA treatment strategy. Only when AAD therapy fails is CA specifically
indicated.

However, it is hypothesized that both treatment strategies can be further optimized.
For AAD therapy, better-suited agents with higher success rates and fewer side effects
may be prescribed [KR20]. Briefly, there are two classes of AADs: rhythm control,
in which AFib is suppressed in the atria, and rate control, in which conduction of
excitation through the Atrioventricular (AV) node is suppressed. A more complete
description and classification has recently been published in [Lei+18].

For CA, different ablation strategies can be used. Commonly, the first-order procedure
is Pulmonary Vein Isolation (PVI). In this procedure, an ablation catheter is inserted
into the left atrium and used to destroy the tissue surrounding the Pulmonary Veins
(PVs) to electrically isolate the rest of the atrium from them. The procedure has a 12-
month recurrence rate of about 50% for persistent AFib, and about 40% for paroxysmal
AFib [Gai+08]. For some patients, PVI may be repeated in a subsequent procedure
if tissue reconnection has occurred some time after the initial isolation. Patients for
whom PVI remains unsuccessful may require alternative strategies of atrial ablation. A
non-exhaustive list of ablation strategies is described in section 2.2.

The most popular interpretation of varying CA / PVI success is described in the
AFib driver theory. Here, localized myocardial tissue inside the atria or PVs is thought
to drive AFib by either initiating electrical impulses similar to the SA node (commonly
referred to as a focal impulse) or facilitating an electrical reentry circuit (commonly
referred to as a rotor). Details are described in section 2.1. This theory accurately
predicts that some drivers can be electrically isolated from the atria with a PVI - thereby
nullifying their effect on ventricular contractions - while others (atria-situated) remain
unaffected.

Research investigating measurable effects of driveres located in the PVs versus
elsewhere in the atria remains limited. Previous efforts have largely focused on guiding
treatment strategy and identifying atrial drivers. Their findings are discussed in
chapter 2.

However, information on the presence of different driver types is valuable prior
to ablation: It can be used to guide treatment strategy, predict treatment success, or
stratify patients into subgroups for more informed analysis. A method is needed that
can infer inner myocardial state without an invasive intervention, while ideally being
as inexpensive and quick to collect in daily clinical practise as the standard 12-lead
Electrocardiagrams (ECGs).

For targeted driver ablation, Electrographic Flow (EGF) [Bel+18] is a novel approach
to interpreting voltages from dense intracardiac catheter electrode data. EGF maps
are computed using a motion estimation algorithm commonly used in computer
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1 Introduction

vision tasks (Horn & Schunck [HS81]). A study testing the efficacy of EGF-guided
targeted driver ablation is currently underway. EGF and related studies are discussed
in section 2.4.

EGF-related techniques have not yet been tried on body surface data. However, it is
well known that topological Body Surface (BS) ECG data yields important information
about myocardial state [Ram+04], even if inverse mapping to intracardiac data is not
easily achieved. I therefore hypothesize that when mapping atrial flow from body
surface electrodes, phenomena similar to those observed in intracardiac data may also
be observable.

Outline In this thesis, I use EGF-derived metrics extracted from dense unipolar BS
ECGs to predict the presence of atrial drivers. Since ECGs are common and non-invasive,
they can be collected and analyzed inexpensively. The studied metrics are derived from
two knowledge sources: First, knowledge is drawn from previous recurrence prediction
studies (section 2.3). Second, driver indications from intracardiac data, as described in
previous research (section 2.4), are used as primary assumptions for EGF-based metrics.
A list of metrics derived and tested in this thesis is described in section 4.3.

Knowledge of the presence of atria-situated drivers would indicate the need for a
non-PVI treatment strategy and should therefor correlate positively with recurrence.
By testing this hypothesis, this thesis can hopefully contribute to effective low-cost
stratification of patients prior to invasive intervention for treatment guidance and
further research.

3



2 State of the Art

Because atrial fibrillation is such a common yet consequential and complex disease, it
has long been the subject of extensive research. Knowledge of the disease is confirmed
in most of recorded history [Faz07], with the appropriate attribution to the circulatory
system dating back to 1628. The first human AFib ECG was recorded in 1906, and
shortly thereafter in 1921 [LDI21], the theory of AFib drivers was proposed. Current
formulations and open questions about drivers are discussed in section 2.1.

At the time, it became clear that further interpretation of AFib by pure expert
knowledge had limited success. Recurrence prediction, among other endpoints, was
achieved with better success rates when metrics based on clinical patient history were
used. However, even these encountered severe limitations in effectiveness. This class of
metrics is discussed in detail in section 2.3.

Only recently did ECG-derived metrics regain popularity, with the advent of fast
and easily accessible computing power. Predictions based on automated sample-based
metrics achieved high predictive success, outperforming those based on clinical patient
history. One such metric, AFib amplitude, generally predicts spontaneous termination
of AFib during ablation with a sensitivity of approximately 80% and a specitivity of
70% [Nau+09].

However, this simple baseline metric still serves as the cornerstone of ECG-derived
metrics. It is likely to reflect the general state of the atrium, correlating with atrial
fibrosis [Nak+19]. This suggests that the ECG may offer undiscovered potential for
further stratification or analysis of AFib patients. ECG-derived scores are described in
subsection 2.3.1.

In this thesis, body surface EGF maps are introduced. As such, EGF and the evidence
supporting EGF in intracardiac data need to be discussed (section 2.4). The applicability
of EGF on the body surface has not been previously tested and is the subject of this
thesis.

2.1 Drivers of Atrial Fibrillation

The concept of atrial fibrillation drivers describes localized myocardial tissue that
perpetuates ("drives") a patient’s atrial fibrillation. Two different types of drivers can
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2 State of the Art

be observed: foci and rotors. In the following section, I briefly describe a contempo-
rary understanding of AFib drivers. A more complete description has recently been
described elsewhere [Man+18].

Rotors, also called reentrant drivers, are localized tissues that facilitate micro reentry
circuits (Figure 2.1). They function analogously to macro reentry circuits, in which
larger structures facilitate reentry — often sustaining regular tachycardia — but due
to the complexity of AFib wavefront propagation and size of the circuit cannot be
observed as easily.

Figure 2.1: Simplified rotor reentry circuit. A wavefront propagates around an effective
electrical blockage (e.g., a scar) more slowly than repolarization. Note
that there is not necessarily a blockage to the surrounding tissue, so the
wavefront can propagate outward.

Foci, also called focal impulses, are localized tissues that act as ectopic pacemakers,
effectively similar to SA nodes. Many cells have the capacity for automaticity, but are
normally suppressed by the higher rate of the SA node.

It is likely that both of these drivers exist and contribute to the maintenance of AFib.
In some cases, both types of drivers have been observed in the same patient [Til+20].
In general, however, ground truth knowledge about the existence and contribution of
each in individual patients is sparse and subject to a lot of contemporary research. It is
likely that better understanding and knowledge of the presence of these drivers can
help guide treatment strategies and provide insight into long-term outcome.

Both types of drivers have been described to generally switch on and off at irregular
intervals [Cuc+10], possibly contributing to the complex nature of AFib. Some drivers
may be active more frequently or for longer periods, while others are entirely transient
and likely contribute little to the maintenance of AFib. Identifying the primary sites is
key to understanding a patient’s AFib.

To support the driver theory, many contemporary studies suggest that atrial fibrosis

5



2 State of the Art

plays a primary role in the maintenance of AFib [McG+14; Lau+17; Pla17; Sah+18].
In addition, areas of fractionated signal indicate slow conduction and may serve as
fulcrums for complex reentrant circuits [Nad+04].

An adjunct to driver theory that must be considered is the possibility of transmural
conduction. Here, the myocardium is modeled as consisting of multiple layers (multilayer
hypothesis). This opens the possibility of rotational sites orthogonal to the surface of
the myocardium, facilitated by reentry circuits breaking through different layers of
myocardium. Some mapping techniques would observe this type of rotor as a focus,
in particular if bipolar electrodes are used. However, elimination of these epicardial
breakthroughs by ablation would provide a similar result to ablation of a micro reentry
circuit or focal source, potentially terminating AFib.

There are other interpretations of possible factors, and indeed, multiple factors may
ultimately contribute to sustaining AFib. The leading counter theory to localized AFib
drivers is the meandering wave theory: this postulates that multiple meandering waves
maintain AFib and no single focus or rotor is active for a sustained period of time.
This theory has fallen out of favor due to increasing evidence supporting AFib drivers
[Til+20]. In an example of contrasting observations, Sahadevan et al. [Sah+04] collected
dense electrode data (404 electrodes) from 9 patients simultaneously in both atria (8/9)
during open heart surgery. They found localized sites of stable, repetitive activation
(7/9) and postulated that these served as drivers.

2.2 Targets of Atrial Ablation

In general, the efficacy of ablation techniques is difficult to assess because desirable
endpoints [Cal+17] are often elusive, require long waiting times or are inherently fuzzy.
This is further complicated by the fact that there are many modalities for ablation
treatment: e.g. the target, the isolation technology, or even simply the tested endpoint.
For optimal treatment, ablation techniques may need to be selected on a patient-specific
basis and a one-fits-all solution may not be realistic. However, meaningful stratification
for this has yet to be defined.

In the following section, different approaches to ablation targets are reviewed. These
may help to illustrate the diversity of the AFib treatment landscape and provide insight
into past or current interpretations of the nature of AFib and the role of various factors
in its maintenance.

A long standing ablation strategy is linear line ablation. This procedure involves the
creation of single long ablation lesions along the atria. While somewhat effective when
performed as a singular measure [Wu+14], it has more recently been shown to provide
no additional efficacy when performed in addition to PVI [Zhi+16].
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2 State of the Art

Cox et al. performed the first maze ablation (also called ’cut-and-sew’ maze ablation)
[CSB00] in 1987. This procedure involves a series of long surgical lesions across the
myocardium that create electrical blocks and inhibit free flow across the atria. It was
long considered the "gold standard" of ablation treatment. A detailed contemporary
understanding of the technique has recently been described in [Rua+18]. Later in 1994,
the same technique was performed using CA [Sch+82] which facilitated closed-heart
interventions [Swa94]. Ablations using CA while performing the same lesions are often
referred to as ’mini-maze’ ablations. A remaining advantage of surgical ablation is that
the transmurality and completeness of lesions can be assured [Stu+07].

In 1998, Haïssaguerre et al. posed and tested the hypothesis of spontaneous initiation
of atrial fibrillation by ectopic beats originating in the pulmonary veins [Haï+98]. They
studied AFib patients in SR and mapped the point of earliest activation preceding an
initiation of AFib. They confirmed the accuracy of their prediction by testing whether
AFib terminated after ablation of the focus. Following this publication, PVI emerged to
clinical practice as a minimal and effective procedure, where the PVs are electrically
isolated from the rest of the myocardium. PVI is currently considered by many to
be the staple procedure for CA, and is usually performed in all patients before other
ablation strategies are considered.

In a more recent metastudy, Nery et al. [Ner+16] evaluated 11 studies on the
association between reconnection of PV tissue and AFib recurrence. They found
that electrical reconnection around at least one PV occurred in 58.6% of the AF-Free
population and in 91.2% of the recurrent population. This suggests that reconnection
of tissue is common even in nonrecurrent patients, although even more common in
patients without a favorable outcome, and that complete isolation of all PVs may not
be required in all patients. At the same time, complete isolation does not guarantee
freedom from AFib at follow-up, suggesting the involvement of other mechanisms in at
least these populations. They concluded that further research is needed and raised the
question of whether the high effectiveness of AFib is solely attributable to the electrical
isolation of ectopic foci.

However, even after the establishment of PVI as the cornerstone of ablative AFib
treatment, other ablation targets have been proposed to determine whether this tech-
nique can be surpassed, or to provide an alternative for patients for whom PVI remains
unsuccessful.

The 2012 CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without
Focal Impulse and Rotor Modulation) [Til+20] trial was the first to investigate the effec-
tiveness of adding targeted atrial driver ablation to conventional ablation procedures.
Conventional procedures here entailed a PVI and possibly additional linear ablations,
added at the discretion of the treating physiologist. Their primary acute endpoint
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2 State of the Art

was the modulation of AFib (expressed as spontaneous termination or prolongation
of AFib cycle length during ablation). They observed a modulation in 86% vs 20% of
their patients for the acute endpoint. For another endpoint, a 1 year followup of AFib,
they observed a 45% vs 82% recurrence, suggesting localized drivers as an appropriate
ablation target.

Another potential ablation target are Ganglionated Plexis (GPs). Here, four GPs
that are located near the PVs are ablated. Po et al. [PNJ09] showed improved clinical
outcomes when GPs were targeted in addition to the PVs, although success rates varied
depending on the performing sites.

The most commonly used treatment avenues for AFib are currently AADs and
PVI. The largest related treatment outcome study, the CABANA [MD+19; Mar+19]
trial reported evidence for PVI outperforming AAD treatment. For AADs and PVI,
respectively, they reported a 3-year recurrence of 69% vs 50%, all-cause mortality of
5.3% vs 4.7%, and significant improvements of QOL in CA over AAD. The study largely
confirmed previous, smaller studies [Mar+18; Mor+14; Pac+13; Wil+10; Cos+12].

As market share of CA grows, so will research investigating ablation techniques, and
in particular, targets of ablation. If driver theory proves itself and is supported by new
data, it is likely that future methods will shift more toward targeted driver ablation to
increase treatment efficacy and minimize myocardial destruction, which can lead to
stiff atrial syndrome [Yan+16].

2.3 Atrial Fibrillation Risk Scores

When labeling recurrence, there is a general consensus that prolonged and more rigor-
ous monitoring is often required to detect AFib. Indeed, many procedures lower the
AFib burden, sometimes to a point where it is no longer perceptible to the patient —
even when AFib subsists in the atria. This can still lead to further negative clinical
outcomes, especially since AFib is a progressive disease. A 2017 consensus discusses
several potentially relevant endpoints [Cal+17]. However, many trials do not or cannot
meet high monitoring standards, and simpler labels are common - subsequently overes-
timating success rates. This can be a particular challenge when designing recurrence
predictors.

Several clinical risk scores for recurrence of AFib in patients have been proposed in
the past. However, the performance of scores using only information based on clinical
patient history is inconsistent and limited [Dre+20]. Nevertheless, some factors appear
in many different scores and therefore appear to be at least somewhat relevant. The
metastudy by Dretzke et al. postulates that other factors may be needed to achieve better
predictions, such as ECG, imaging-based, or genetic. The most common predictors
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2 State of the Art

in these clinical scores, listed by how many scores included them, were left atrial
parameters (9/13), type of AF (8/13), age (7/13), sex (4/13), and Estimated Glomerular
Filtration Rate (eGFR) (4/13). Among other predictors were duration of persistent AF,
current smoking, AFib history, early recurrence, and hypertension.

Kim et al. [Kim+20] used a neural network on 527 consecutive patients to predict
AFib recurrence. The inputs to the network were purely clinical, with the exception of
Left Atrial (LA) volume and 3D reconstructed LA images. They obtained comparable
results to existing scores (Area under Curve (AUC)= 0.61) and concluded that a larger
scale study is required.

It is likely that clinical factors alone will not be sufficient to build a meaningful
stratification of the patient landscape. However, none of these scores consider the
treatment type as an additional measure of possible success rate. Depending on
the type of patient type, it is possible that different metrics may better indicate risk
depending on the type of treatment chosen, given that factors contributing to a patient’s
AFib may vary by patient. Unfortunately, these mechanisms are not well understood,
and knowledge of the exact contributors to AFib maintenance in individual patients is
difficult to obtain. Therefore, this possibility has not been widely explored and should
be considered for future risk scores or recurrence assessments.

Some AFib recurrence risk scores that incorporate more than purely clinical data
have been proposed. An example was proposed by Shade et al. [Sha+20], who
used Late Gadolinium Enhanced Magnetic Resonance Imaging (LGE-MRI) to create a
personalized computational model of the left atrium. They then extracted features from
both raw images and simulations of AFib induction to feed into a machine learning
model. The model was used to predict recurrence risk. It was found that the induction
simulations had high predictive power (AUC = 0.82), while the raw images did not
(AUC = 0.47). The classifier predicted the probability of AFib recurrence with an
average validation sensitivity of 82% and specificity of 89%.

2.3.1 Risk Scores derived from Electrocardiography

Although it is a useful analytical tool that can provide a wealth of information about
various factors of the circulatory system, the ECG did not initially prove particularly
useful in atrial fibrillation. The complexity of AFib signals makes it difficult to interpret
the superimposed signal of wavefronts and other components by eye.

However, ECG has recently found a resurgence in popularity using more complex,
automated, and technical algorithms for interpretation rather than expert knowledge.
Promising results have been obtained and have proven that the ECG provides important
information about the nature of AFib. Both analytical time series signal processing
models and machine learning models have been proposed for data interpretation.
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2 State of the Art

In 2004, Electrocardiographic Imaging (ECGI) was presented [Ram+04]. Here, 224
ECGs were collected from a vest on the torso. Computed Tomography (CT) scans
and data from these electrodes were then used to reconstruct electrical potentials,
electrograms and isochrones on the heart surface using mathematical algorithms. This
work proved the relevance of dense electrode data and demonstrated its ability to
provide important information about patients.

In 2010, Cuculich et al. used ECGI to characterize AFib patients [Cuc+10]. Using
the CARTO system as ground truth, they reported that they were able to map low-
amplitude signals with high accuracy. They observed multiwavelet reentry in most
patients. Rotor activity was seen in only about 15%, focal activity near the PVs in
69%, and other focal sources in 62%. Other recent studies also reported on insight and
ablation guided by this technology [Yam+15; Kne+17; Hai+14].

The above studies use a class of techniques that attempt to solve the inverse problem
of electrocardiography. This problem space is considered by some to be underdefined
[Oos03] and ill-conditioned [Oos12]. In addition, dense electrode vests also have
intrinsic limitations: They are expensive, tend to have low adhesion, and are generally
impractical, so other techniques have been proposed to overcome these technical
limitations or to reformulate questions in more appropriate problem spaces.

In 2008, Nault et al. [Nau+09] demonstrated the predictive power of Fibrillatory
Wave (F-Wave) amplitudes for recurrence. This metric is still widely considered the
most powerful currently measurable metric from single-lead ECGs. In addition to
recurrence, it correlated with AFib duration and patient age. A maximum amplitude of
≥ 0.07mV predicted termination of AFib by ablation with a sensitivity of 82% / 79%
and a specitivity of 68% / 73% in leads V1 / II respectively. 43% of patients with mean
f wave amplitude < 0.05 in lead V1 experienced AFib recurrence compared to 12% of
those with F-wave ≥ 0.05 (p = 0.004). The metric has been found to be temporally
stable by other studies [Xi+04; Meo+15].

Lankveld et al. examined other parameters derived from 12-lead ECGs for their
predictive power for long-term catheter ablation success and spontaneous termination
during ablation [Lan+16]. The studied parameters included both frequency-space
(dominant frequency, organization index, spectral entropy) and time-space (F-Wave
amplitude, sample entropy) metrics. They confirmed F-Wave amplitude as the best
predictor. Their combined model achieved a validation set AUC = 0.61 for recurrence,
and AUC = 0.70 for termination.

Luongo et al. [Luo+20] ingested simulated 3-second ECG data to extract several
parameters from 12-lead sampled ECGs. For the simulation, transmural fibrotic tissue
was modelled as 2 circular patches with a radius of 14 mm in which 50% of the elements
were not conductive and the other 50% included ionic changes to represent the effect of
cytokines. Singularities were then placed at uniformly distributed points in the atria.
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2 State of the Art

Of 3 classes, 5 features were found to be especially statistically significant: Recurrence
quantification analysis on vectocardiogram (entropy of the diagonal lines, laminarity),
ratio Principal Component Analysis (PCA), eigenvalues (Standard Deviation (STD)
over segments), and reduced lead spatial Recurrence Quantification Analysis (RQA)
(entropy of the vertical lines, determinism).

They proposed a decision tree classifier using 3 of these features to predict the
location of an atrial driver to be near the PVs or elsewhere in the atria. On simulated
data, the classifier achieved a test set accuracy of 98.5%, specificity of 100%, and a
sensitivity of 83.3%.

2.4 Electrographic Flow Mapping

EGF is a novel approach to map AFib conduction across the atrial surface. It was
proposed and described in detail in 2018 [Bel+18]. Briefly, an EGF flow map represents
the inferred wavefront propagation directions within a given time period as a 2D vector
field. An example of different sites as observed in EGF maps can be seen in Figure 2.2.

Figure 2.2: Perfect simulated focal (left) and rotational (right) sites in an EGF map. Flow
is represented as vectors in a plane.

It is worth noting that, in EGF maps, rotational sites may be observed that are not
divergent (Figure 2.3). When searching for sources, both divergence and rotation must
be considered in order to classify singularities.
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2 State of the Art

Figure 2.3: An example of a divergent (left) and convergent (right) rotational site. A
convergent rotational site is not a true rotor, since wavefronts must logically
propagate from it if it drives atrial fibrillation.

To compute EGF, the atrial signal is first separated from other superimposed compo-
nent (e.g. noise, ventricular far-field, baseline wander). Additional processing steps
may be applied, such as downsampling or filtering. The multilead data is then pro-
jected onto a 2D texture and interpolated to a higher resolution. Finally, an adaptation
of the algorithm introduced by Horn & Schunck [HS81] is computed on the texture.
This algorithm formulates visual motion as a minimization problem of vector lengths
and spatial uniformity. A detailed description of EGF computation can be found in
section 4.2.

Bellmann et al. investigated the role of velocity in EGF maps [Bel+19]. They found
that velocity was higher when the source under study was more stable. Additionally,
catheter ablation reduced the source stability, suggesting a possible role for these
parameters during ablation.

Swerdlow et al. compared EGF with another source identification technique, phase
mapping [Swe+19]. They found that sources were identified in a similar number
of patients (81% and 83% for EGF and phasemapping, respectively). The methods
complemented each other, with only 2% of patients having no source identified by
either method. Overall, EGF identified more localized sources than phasemapping,
with a higher prevalence of focal sources versus rotors (49% vs 2%, P < 0.01).

There is no previous work on EGF generated from body surface ECGs.
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3 Body Surface Electrode Datasets

To design the pipeline, as well as to evaluate its effectiveness, human AFib ECGs were
used from 2 different datasets. In this section, these are presented, analyzed, and
discussed. A total of 25 + 100 = 125 patients were available for analysis.

Both datasets are similar in nature. Patients were recorded using a dense BS ECG
setup on the torso. Then, the patients were treated with PVI. Note that some patients
were not "de novo" — meaning they may have undergone prior unsuccessful treatment.
Some patients were also treated with additional ablation lines and medications.

3.1 Dataset A

Dataset A is an uncontrolled prospective dataset of 25 patients collected in collaboration
with the Klinikum der Universität München.

Here, a custom electrode placement was designed using 8 individual 8-electrode
strips. The strips were arranged in an equidistant configuration around the torso
(Figure 3.1). Electrode data were collected using a commercially available amplifier
(TMSi Refa), and consecutive 30 minute recordings were made. Patients lay supine
and were instructed to limit their movements during the recording. Digitally, electrode
positions were assumed to align with a perfect cylinder. Ground truth locations may
differ slightly due to manual electrode placement.

Later, these recordings were divided into disjoint 1-min recordings for analysis. The
leads were manually checked for quality (e.g. dead leads, poor adhesion, noise) during
recording, and the setup was adjusted until a clean recording could be obtained.
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3 Body Surface Electrode Datasets

Figure 3.1: Systematic electrode locations along the torso of a patient in dataset A. A
3D scan of a patient’s torso is shown in grey. In the second image, texture
positions that are later interpolated are overlaid in green.

Subsequently, a PVI was performed. In rare cases, additional ablation lines were
performed at the discretion of the treating physician. Similarly, some patients later
received additional drug treatment if treatment was unsuccessful. A 3-month and 12-
month follow-up of recurrence was collected using a remote telephone questionnaire.

In an adjunct to to the 25 AFib-patient recordings, 7 recordings of healthy patients
were created.

3.2 Dataset B

Dataset B is a retrospective dataset of 120 patients collected during commercial cases in
Russia.

Here, off-the-shelf electrode strips (EP Solutions) were used to collect 240-lead ECGs
for 30 consecutive minutes. These recordings were later divided into disjoint 1-minute
recordings for analysis. In addition, leads were manually assessed by clinicians to
identify outliers (e.g. dead leads, poor adhesion), which were excluded from analysis.

Subsequently, PVI was performed by radiofrequency ablation. If spontaneous ter-
mination of AFib did not occur during PVI, it was at the discretion of the treating
physician to perform additional ablation lines. Similarly, if treatment was unsuccessful
and patients had an early recurrence, some later received additional drug treatment.

14



3 Body Surface Electrode Datasets

All patients received oral anticoagulants (n = 33 Apixaban, n = 41 Xarelto, n = 46
Pradaxa). A 2-week and 12-month recurrence followup was collected.

Electrode positions were provided with with euclidean coordinates (Figure 3.2).

Figure 3.2: Example of derived electrode positions along the torso of a patient in dataset
B. Some electrodes were marked as invalid and excluded from the analysis -
these are colored black in the image. In the second image, texture positions
that are later interpolated from the source data are overlaid in green.

3.3 Descriptive Analysis

This section presents the purely descriptive characteristics of the datasets in Table 3.1.
The prospective dataset A includes 25 patients, while the retrospective dataset B
includes 120, to a total of 145 analyzed patients. Respectively, datasets A and B include
a ratio of 96.0% vs 88.3% (89.7% overall) patients diagnosed with persistent AFib, and
report a 12-month recurrence of 40.0% vs 46.7% (45.5% overall). This is similar to
expected values for this type of procedure.
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3 Body Surface Electrode Datasets

Metric \ Dataset A B Overall

Electrodes 64 ≤ 240

Patient Count 25 120 145
Sex

Female 6 (24.0%) 43 (35.8%) 49 (33.8%)
Male 19 (76.0%) 77 (64.2%) 96 (66.2%)

Other Medical Attributes
Age 68.1 ± 12.3 62.6 ± 9.4 61.9 ± 10.3
Height (cm) 173.3 ± 17.8 174.1 ± 9.2 173.9 ± 11.1
Weight (kg) 87.0 ± 18.9 91.0 ± 19.1 90.3 ± 19.1
BMI 30.4 ± 15.1 29.9 ± 5.3 30.0 ± 7.8
LA Volume (ml) 196.5 ± 66.5 unavailable -
LAA Volume (ml) unavailable 104.1 ± 26.8 -

Medical History
Persistent AF 24 (96.0%) 106 (88.3%) 130 (89.7%)

Ablation
Spontaneous Termination unavailable 39 (32.5%) -
No Additional Ablations unavailable 60 (50.0%) -
+ LA Posterior unavailable 58 (48.3%) -
+ LA Anterior unavailable 21 (17.5%) -
+ LA Inferior unavailable 2 ( 1.7%) -
+ Roof unavailable 21 (17.5%) -

Drugs
Oral Anticoagulants 25 (100%) 120 (100%) 145 (100%)
Beta Blockers unavailable 52 (43.3%) -

Followup
2 week recurrence unavailable 35 (29.2%) -
3 month recurrence 9 (36.0%) unavailable -
12 month recurrence 10 (40.0%) 56 (46.7%) 66 (45.5%)

Table 3.1: Properties of the datasets. (x ± y indicates the mean and standard deviation)
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4 Methods

4.1 Isolation of Atrial Signals

Any ECG can be modeled as a superimposition of several independent components. It
can therefore be expressed as such:

x = ∑ xcomponent (4.1)

Fortunately, the biggest contributors to the signal, in terms of amplitude, are well
known:

• xatrial : voltage differences originating from wavefronts in the atria.

• xventricular: voltage differences originating from wavefronts in the ventricles.

• xbaseline-wander: a low-frequency high-amplitude component originating from vari-
ous sources including respiration, body movement, and poor electrode adhesion.

• xmains: sinusoid component of narrow frequency bands originating from nearby
electronic devices.

• x f ar- f ield: other components of similar morphology in all recorded electrodes.

In this thesis, therefore, the signal decomposition is conceptually modeled as such:

x = xatrial + xventricular + xbaseline-wander + xmains + x f ar- f ield + xunknown (4.2)

For atrial parameters, only the atrial component of the signal is relevant. The
other superimposed components may interfere with the calculation, especially if they
are of comparable or higher amplitude than xatrial . Fortunately, because the biggest
contributors to the signal in terms of amplitude are well-known, expert knowledge
can be used to approximate their shape and subsequently subtract them from the final
signals. However, since a perfect approximation is unlikely, an error term must be
added. An attempt to separate atrial signals would therefore be modeled as such:

xatrial + xunknown + error = x − (x̂ventricular + x̂baseline-wander + x̂mains + x̂ f ar- f ield) (4.3)
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In reality, however, atrial separation is usually achieved by applying several functions
to the signal in sequence. These may change the morphology or even the phase of the
signal. An example of a more appropriate model of actual separation may therefore be
expressed as such:

x̂atrial = rm_ventricular(rm_mains(rm_baseline(rm_farfield(x)))) (4.4)

In this thesis, as in most previous studies, isolation of atrial signals is achieved
by several sequential processing steps. Therefore, there may be a change in the
morphology of the individual components. The pipeline can be represented by the
following simplified pseudocode:

# N = Number of channels
# T = Number of samples in each channel
# C = Number of qrs clusters
# ~L = Number of templates in a qrs cluster

def isolate_atrial_components(signal: [N, T]) -> [N, TS]:
reference_signal: [N, T] = signal
reference_signal = mitigate_mains_noise(reference_signal)
reference_signal = highpass_filter(reference_signal)

qrs_clusters: [C][~L] = templates.locate_clusters(reference_signal)
mains_noise_hz: float = find_max_frequency(reference_signal)

signal = zero_center_channels(signal)
signal = subtract_global_average(signal)
signal = mitigate_mains_noise(signal, mains_noise_hz)
signal = cancel_synchronized_qrs(signal, qrs_clusters)
signal = remove_baseline_wander(signal)
signal = lowpass_butter(signal, hz=50)

return signal

In the following subsections, each step is examined for its purpose, and the implemen-
tation is presented. Notably, there are many hyperparameters that are not represented
in the simplified implementations provided here. Some of these are discussed in the
respective sections; in general, these have been adapted on a case-by-case basis, taking
into account expert knowledge, signal reproducibility, and optimization heuristics.

A complete example of the steps of atrial signal isolation can be found in section .1.
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4.1.1 Zero-Centering

When a high-pass filter is applied to a signal that starts at an value, lateral ringing
may occur depending on the cutoff frequency (ex: Figure 4.1). To avoid this, a zero-
centering step is applied to each channel, shifting the entire signal by a constant without
distorting it.

Figure 4.1: Zero-Centering: Example of morphology distortion / lateral ringing when
a 2Hz high-pass filter is applied. Zero-Centering channels helps mitigate
the effect.

def zero_center_channels(signal: [N, T]) -> [N, T]:
return signal - signal[:, :100].mean(axis=-1, keepdims=True)

4.1.2 Global Average Subtraction

Signals often have some amount of far field from unwanted sources. By subtracting the
average of all available channels from each, these effects can be mitigated.

def subtract_global_average(signal: [N, T]) -> [N, T]:
return signal - signal.mean(axis=-1, keepdims=True)

4.1.3 Mains Hum Removal

Many recordings contain 50Hz or 60Hz noise as a superimposed signal. These may
be electronic devices near the electrodes, the recording amplifier or the cables. The
maginitude may vary, but if there is a systematic gradient between different recorded
leads, it can induce flow in the flow estimation step. A good mains hum removal
technique is required.
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Previous works often used a notch filter. Notch filters are well-understood, commonly
available and thus easy to employ. However, they have several disadvantages:

• Ringing can be induced in the start and end of the signal.

• If relevant signal covers frequencies in the same spectra, morphologies may be
deterministically disturbed (Figure 4.2).

Figure 4.2: Example QRS-T morphology change when a 50Hz notch filter with a large
frequency band is applied. Blue lines indicate individual QRS-T complexes
before filtering. Orange lines indicate individual QRS-T complexes after
filtering.

Because of this, other techniques have been proposed to remove mains noise [Gar+18].
Fortunately, these limitations can also be mitigated if the mains hum frequency is

known to a high degree of precision. Frequencies of mains hums drift over time [], but
not significantly within one minute. To achieve this, I implemented a mains frequency
detection that decomposes the signal into frequency space using Fast Fourier Transform
(FFT) and subsequently detects the largest peak in the range (49.9, 50.1). Evaluating the
trade-off between a high degree of mains suppression and a morphology preservation,
a notch filter size was determined that was found to be sufficient for this thesis.

4.1.4 Baseline Wander Correction

Many ECGs contain baseline wander as part of the superimposed signal. This term
usually refers to low-frequency motion, the amplitude of which in many cases can
exceed those of the desired signal by several factors. A common approach to removing
this component is to use a high-pass filter. However, this has several disadvantages:

• Ringing may be induced in the beginning and end of the signal.
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• The cutoff frequency imposes a trade-off of efficacy of the separation versus
disturbance of morphologies.

These limitations are well-known, and other approaches have been proposed [Sun+19;
GSJ15].

Recently, Wan et al. [Wan+19] proposed a method that combines two previous
approaches, morphological and wavelet-based filtering, to create a more resilient model.
Here, the signal is first simplified with morphological filters and then approximated
with a Discrete Wavelet Transformation (DWT) low-pass filter. In this thesis, I use a
similar strategy, with one adjustment: I replace the use of DWT with a more conven-
tional bi-directional butterworth filter. These approaches are comparable, but in the
studied data sets, the butterworth filter achieved more reliable results. A high-level
pseudocode implementation can be described as follows:

def remove_baseline_wander(x: [N, T]) -> [N, T]:
size = int(size_ms * sampling_rate_hz / 1000)
size_t = (*(0,) * (x.ndim - 1), size)

cl_op = grey_opening(grey_closing(x, size=size_t), size=size_t)
op_cl = grey_closing(grey_opening(x, size=size_t), size=size_t)
x_simple = (cl_op + op_cl) * 0.5

baseline = lowpass_butter(x_simple, cutoff_hz=2.0)

return x - baseline
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Figure 4.3: Example of baseline wander correction. The first diagram shows the original
data (blue) and the simplified data (orange). The second diagram shows
the simplified data (blue) and the low-pass filtered data (orange). The third
plot shows the original data (blue), the estimated baseline (orange), and the
corrected data (green). The x-axis represents milliseconds and the y-axis
represents millivolts.

4.1.5 QRS-T Cancellation

Body Surface ECGs consist of several of superimposed signals, with the ventricular com-
ponent usually posing by far the greatest influence in terms of amplitude. Depending
on the placement of the electrode, this component may be more or less dominant, but
when uniformly distributed electrodes around the torso are examined, one is dealing
with a range of different morphologies and superimposition ratios. To properly isolate
the atrial portions of a body surface ECG, the ventricular component must be removed
to a high degree of accuracy. This is particularly important when using the underfitted
Horn & Schunck method, as it is highly sensitive to repetitive systematic gradients.

Fortunately, given a sleeping or resting patient with steady breathing, morphologies
of the QRS-T complexes can usually be considered to be very consistent — even in AFib
patients. Moreover, in AFib patients, atrial activity is not synchronized to ventricular
components (no AV-association). Thus, using templates, the repetitive ventricular
component can be separated and finally subtracted from the signal. Similar approaches
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have been used in previous studies with satisfactory results [KD07]. For this thesis, I
have implemented and used a specially developed QRS-T cancellation algorithm that
is capable of processing a wide variety of signals for reliable signal separation and
ventricular component compensation.

This system builds templates with signal means and therefore requires sufficient
baseline wander correction (e.g. through filtering) on its input signal (Figure 4.4).

Figure 4.4: Input signal for ventricular signal separation.

Iterative Ventricular Component Estimation

While the baseline wander correction algorithm used in this thesis is excellent at
preserving morphologies on the time axis, it can be somewhat inconsistent in estimating
the baseline in terms of amplitude if high-amplitude QRS-T complexes exist in the
signal.

This creates a problem: For precise QRS-T morphology estimation, the baseline must
be properly corrected. However, for precise baseline correction, QRS-T complexes must
be cancelled. Fortunately, the baseline estimation approach used is good at preserving
morphologies on the time axis. This would not be the case for a conventional filter
approach. This opens the possibility for an iterative approach, where each iteration
can improve the estimations for each. The iterative approach converges after about 3
iterations.

The final signal with cancelled QRS can be obtained by simply subtracting the
ventricular component from the original. Since QRS morphology is still somewhat
variable, perfect separation cannot usually be achieved with this method. Therefore,
the parts of the signal with the strongest slope (r-peaks) are excluded from further
analysis (e.g. using a mask). An example of a complete QRS-T subtraction can be seen
in Figure 4.5.
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Figure 4.5: Isolation of non-ventricular signal by subtracting ventricular signal from the
original.

A simplified pseudocode implementation can be expressed as such:

def cancel_synchronized_qrs(
signal: [N, T],
qrs_custers: [C][~L]

) -> [N, T]:
ventricular_components: [N, T] = zeros_like(signal)
for i in range(3):

no_ventricular = signal - ventricular_components
no_baseline = remove_baseline_wander(no_ventricular)

ventricular_components += separate_ventricular(no_baseline)

return signal - ventricular_components

Synchronization and Clustering

To create templates, timings and clusters must first be established. 3 steps are used
to achieve this: The slope of the signal is analyzed to find local maxima (initial
synchronization: Figure 4.6). Then, a window around each local maximum is converted
to frequency magnitude space and input to the DBSCAN [Est+96] algorithm to form
clusters. Finally, the timings of templates in each cluster are iteratively optimized using
maximum correlation. This approach results in sub-millisecond and sub-sample timing
accuracy.
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Figure 4.6: Detection of QRS instances by using the signal slope. The red line represents
the amount of indication for a QRS, as computed using all channels.

Separation of Synchronized Signals using Templates

In sub-algorithm, timings are used to create templates that are then used to reconstruct
the signal. First, for each channel and cluster, the signals synchronized at the QRS
positions are superimposed. The templates are formed from the mean of the signals,
with a minimum of 10 samples (Figure 4.7). If the signal is heavily prefiltered, different
parts of the templates may blend into each other (e.g. T-Wave into QRS). To mitigate
possible effects of other QRS-T instances in templates, a constant length (n = 200ms)
before the R-Peak, and a variable length after the R-Peak (until the next influence
window) is used to construct templates. This is especially important when the actual
length of the T-Wave and heart rate are not precisely known at the time of the algorithm
design, which is the case for any unsupervised algorithm.

Figure 4.7: Superimposed clustered QRS-T instances for template construction. Each
instance is drawn with a low alpha value so that the mean can be easily
visually discerned. Gray lines represent portions of the templates that
intersect the next QRS complex. The lines are otherwise colored according
to their cluster as determined by the previous calculation step.

Finally, templates are inserted at the appropriate QRS locations (Figure 4.8). If
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a template could not be constructed due to a low cluster size (e.g. for Premature
Ventricular Contractions (PVCs)), corresponding parts of the signal are excluded from
further analysis.

Figure 4.8: Reconstruction of the ventricular signal by insertion of templates. The
blue line represents the original signal, the red line the reconstructed parts
synchronised with instances of QRS.

4.1.6 Lowpass Filter

As a final step to atrial signal isolation, a low-pass filter is applied to the signal. Atrial
components are known to be below 50Hz, and a low-pass filter can help eliminate
outliers and artifacts introduced by earlier steps.
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4.2 Flow Computation

To estimate atrial electrical flow, this work uses an adaptation of the visual flow esti-
mation algorithm introduced by Horn & Schunck [HS81], but it must modify the data
through several additional processing steps before it can be effectively applied. These
steps are listed and explained in the following sections. Associated hyperparameters
were manually optimized for reproducibility between independent recordings of the
same patient and uniqueness between patients for all steps. The entire pipeline for flow
estimation can be represented by the following simplified pseudocode:

# N = Number of channels
# T = Number of samples in each channel
# T2 = Number of samples after subsampling
# S = Number of segments
# F = Number of frames per segment
# R = Number of rows in the resulting texture
# C = Number of columns in the resulting texture

def estimate_flow(data: [N, T], positions: [N, 3]) -> [S, F, R, C, 2]:
data_ss: [N, T2] = subsample(data, hz=1000 / 19)
data_ss = normalize(data_ss)

texture_shape: [R, C, 3] = shapes.cylinder.fit(positions, (R, C))
data_projected: [R, C, T2] = resample_rbf(

data,
input_positions=positions,
output_positions=texture_shape

)

data_segmented: [R, C, S, F+1] = split_into_segments(data_projected)

return estimate_flow_hs(data_segmented)

4.2.1 Subsampling

Horn & Schunck’s algorithm estimates flow based on spatial and temporal gradients
from subsequent greyscale image pairs. The process of underfitting allows lower
frequencies to be matched, but frequencies as high as the sampling frequency tend yet
to dominate. In order to allow both higher computational speed and to increase the
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scale of the analyzed frequencies, the signal must be subsampled. A sample length
of 19 milliseconds is chosen for a high degree of reproducibility in flow maps. The
resampling method chosen uses a windowed rolling mean to aggregate samples.

4.2.2 Normalization

The Horn & Schunck motion estimation algorithm assumes constant amplitudes in
time and space ("brightness constancy assumption"). However, this is not the case
for electrode-based data. In particular, electrodes placed on the patient’s back record
lower amplitudes than those placed on the front - but amplitudes can also vary over
time. Therefore, a rolling window of amplitude estimation across each electrode is
used to normalize the remaining signal. Notably, if there are no F-Waves in the signal,
this will inflate either noise or possible residual values of previously separated signals
(e.g. ventricular components). Therefore, high-quality separation of signals is required
prior to this step. If unsystematic noise is inflated, the flow estimation algorithm will
yield a low Flow Angle Stability (FAS) (described in subsection 4.3.1), which is usually
interpreted as unsystematic flow and does not systematically affect any of the metrics
analyzed.

4.2.3 Projection

Up to this point, the data have been considered as synchronized, but untopological time
series. However, in order to compute Horn & Schunck, a 2D plane must be constructed.
In addition, higher resolution is desirable to increase the smoothness of flow fields and
possibly the accuracy of the metrics.

Fortunately, both can be achieved in the same step using Radial Basis Function (RBF)
interpolation [BL88]. Here, positions are provided for each trace. An output shape is
then defined, which are traces of equal shape and attached positions. For each time
step and trace, the data is interpolated using a distance metric for weighting.

In this thesis, I use a cylindrical shape fitted to the input points as the input shape,
since this shape can be easily unrolled into a texture. It is notable that when this shape
is used, there is a rollover seam in the texture. This needs to be taken into account
when calculating flow and subsequent metrics with kernels. I use euclidean distance as
RBF’s distance metric, and thin plate spline for interpolation. A simplified pseudocode
implementation can be found below.

def resample_rbf(
x: [N, ...],
positions: [N, 3],
texture_positions: [R, C, 3]
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) -> [R, C, ...]:
texture_positions_flat: [R*C, 3]

= texture_positions.reshape(R * C, 3)

wcm: [N, N] = weight_computation_matrix(
positions
distance_fn="euclidean"

)
rm: [R*C, N] = rbf_matrix(

texture_positions, positions,
distance="euclidean"

)
rm_wcm: [R*C, N] = rm @ wcm
sample_values: [R*C, 1, ...] = rm_wcm @ data[:, newaxis, ...]

return sample_values[:, 0].reshape(R, C, ...)

4.2.4 Segmentation

Because AFib drivers are transient and can spontaneously turn on and off at short
intervals, the observed flow can strongly vary between independent time frames.
Therefore, only short time windows (several seconds) are usually considered until the
state is reset. If a driver is relevant to the maintenance of AFib, it should produce
similar flow maps for independently considered time spans. Therefore, in this thesis, I
segment the data into 2-second sections, using the data from the respective previous

sections to initialize the flow field. A 60-second recording then yields
⌊

60
2

⌋
− 1 = 29

distinct flow fields and metrics. A simplified pseudocode implementation can be found
below.

SEGMENT_SIZE_MS = 4000
OVERLAP_MS = 2000

def split_into_segments(x: [..., T]) -> [..., S, F]:
stride_ms = SEGMENT_SIZE_MS - OVERLAP_MS
segment_count_ms = (T - OVERLAP_MS) // stride
return rolling(x, segment_count_ms, stride=stride_ms, axis=-1)
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4.2.5 Frame-Wise Flow Estimation

To estimate flow, a commercial adaptation of the algorithm introduced by Horn &
Schunck [HS81] is computed on the interpolated voltage texture frames (Ablacon, Inc.).
This algorithm formulates visual motion as a minimization problem of vector lengths
and spatial uniformity. In the adaptation, the flow vectors for each pair of frames are
unterfitted so that many pairs can be input for the same vector field. As output, vector
fields of the same size as the texture are produced; one for each window. Individual
flow frames can also be analyzed for different metrics; however, due to the underfitting
process, it is important to note that the vectors do not vary greatly from frame to frame.
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4.3 Flow Maps

To evaluate flow calculation on the body surface, different techniques can be considered.
In this thesis, I use three different methods that generate 2D feature maps of the same
shape as the original flow maps. Example implementations of these methods pertaining
to EGF in intracardiac data were provided by Ablacon, Inc. Some implementation
details and hyperparameters were adjusted to optimize against computation on body
surface data.

The resulting images (EGF maps) can be analyzed qualitatively or quantitatively in
later steps. The calculation of flow frames and the subsequent flow estimation has
already been discussed in section 4.2. The output of the flow function is twofold:

One, individual flow frames can be used to calculate subsequent maps and metrics.
Due to the process of underfitting flow in this algorithm, successive flow frames are
usually similar. This must be taken into account when analyzing flow using this data.

Two, full segments of flow can instead be used. Depending on the chosen segment
size, these may represent several seconds of flow activity at once.

Based on the results of previous work with EGF and the assumption that drivers
are transient and can turn on and off quickly, I evaluate metrics for individual flow
frames in this thesis. Resulting maps are later aggregated over entire segments for
computational simplicity. Thus, the number of resulting feature maps per recording is
equivalent to the number of segments. The feature maps are created from a cylindrical
approximation of the patient’s torso. This texture unrolls from 3D space with +y =

superior and +x = clockwise rotation. The left seam of the texture is at an angle of
δ = −45◦ to the anterior sagittal plane of the patient. This means that, in sequence, the
left to right portions of the textures correspond to front, right, back, left sections of the
patient’s torso.

The techniques presented in this thesis are based on or inspired by phenomena often
observed in flow maps of intracardiac electrode data, as described by previous research
[Bel+18] — as well as contemporary knowledge about AFib drivers. In the following
section, these are presented and explained.

4.3.1 Flow Angle Stability

Purpose

To locate and analyze areas of stable flow flow.
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Background

In the intracardiac problem space, it has been shown that sources are usually sur-
rounded by areas of stable flow. Similarly, it has been observed that flow is chaotic
when an area is far from the nearest nearby source. Logically, this can be explained by
the fact that the wave fronts originate from the nearby source, enabling little deviation.
Far away tissue has a greater chance of accumulating differences in propagation pat-
terns, and in addition meandering waves could further influence the flow. I therefore
hypothesise that areas of high flow angle stability could be observed at the body surface
if highly active sources are present in the atria.

Computation

FAS is calculated using flow angle frames as input. The mean values of all frame-pair
differences per pixel are calculated. This substep is called flow angle total variation.
An example calculation is shown in Figure 4.9. Flow angle stability values are then
calculated using the equation 1/(x + δ) where δ is an arbitrarily small number.

A pseudocode implementation based on a tensor for flow frames in cartesian vector
representation follows:

def flow_angle_stability(flow_frames: [..., F, 2]) -> [..., F]:
theta, _ = cartesian_to_polar(flow_frames.unstack(axis=-1))
angle_diff: [..., F] = abs(theta[..., 1:] - theta[..., :-1])
angle_diff = minimum(angle_diff, abs(angle_diff - 2 * pi))
return 1.0 / (angle_diff.mean(axis=0) + 0.0001)

Figure 4.9: An example computation of a 2 ∗ 2 flow angle total variation map based on
3 consecutive flow frames.
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Examples

Figure 4.10: An example of a flow angle stability map, representative of 2 seconds
of flow, of a patient in dataset A. Flow vectors and electrode labels are
superimposed.

Figure 4.11: An example of a flow angle stability map, representative of 2 seconds
of flow, of a patient in dataset B. Flow vectors and electrode labels are
superimposed.

4.3.2 Streamline Origins Density

Purpose

To locate origins of wavefronts by quantifying divergent singularities.
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Background

In the intracardiac problem space, sources have been shown to produce divergent
flow patterns. Logically, this can be explained by drivers generating wave fronts that
propagate outward. Divergence can be measured in several ways. One way is to
simulate particles and move them in the reverse direction of flow. Areas where a high
density of particles accumulates can be considered as divergent.

Computation

Streamline Origin Density (SOD) is calculated by simulating particles on a flow field.
The particles are generated at random, ideally at uniformly distributed positions. If

the particles are moved along the flow field and converge to a singularity, sinks can
be located. If the particles are moved along the inverted flow field and converge at
a singularity, sources can be located. The complete motion vector from the source to
the sink is called a streamline. Due to the smoothing term of the Horn & Schunck
algorithm, singularities are unlikely to form randomly.

Finally, SOD is calculated by generating a texture, coloring the pixel closest to the
singularity and finally smoothing the texture with a Gaussian filter.

A simplified, pseudocode implementation can be expressed as follows:

N = 10000
STEP = 0.0001
SIGMA = 10

def streamline_origin_density(flow_map):
particles = spawn_random_particles(in_texture=flow_map)

streamlines = zeros((len(particles), N, 2))

for i in range(N):
particles = [

apply_boundary_conditions(particle - flow_map[particle] * STEP)
for particle in particles

]
streamlines[:, i] = particles

converged_particles = converged_streamlines(streamlines)[:, -1]

texture = zeros(flow_map.shape[:-1])
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for particle in converged_particles:
texture[particle] += 1

return gaussian_filter(texture, sigma=SIGMA)

Examples

Figure 4.12: An example of a streamline origins density map, representative of 2 seconds
of flow, of a patient in dataset A. Simulated streamlines, flow vectors and
electrode labels are superimposed.

Figure 4.13: An example of a streamline origins density map, representative of 2 seconds
of flow, of a patient in dataset B. Simulated streamlines, flow vectors and
electrode labels are superimposed.
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4.3.3 Sources

Purpose

To locate origins of wavefronts by quantifying divergent singularities.

Background

In the intracardiac problem space, sources have been shown to produce divergent
flow patterns. Logically, this can be explained by drivers generating wave fronts that
propagate outward. Divergence can be measured in several ways. One way is to
locate singularities of directions in the vector field. Because of the smoothing term of
the Horn& Schunck algorithm, these are unlikely to occur unless the flow is either
convergent, divergent, or rotating around these singularities. Singularity analysis can
further distinguish these types, which has previously been used to locate drivers using
intracardiac catheter electrodes.

Computation

Source maps are computed using an algorithm developed at Ablacon, Inc. Briefly, the
algorithm locates divergent singularities by convolution of flow vectors with orthogonal
angles.

Examples

Figure 4.14: An aggregation of a source map, representative of 60 seconds of flow, of
a patient in dataset A. The euclidean mean of flow vectors and electrode
labels are superimposed.
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Figure 4.15: An aggregation of a source map, representative of 60 seconds of flow, of
a patient in dataset B. The euclidean mean of flow vectors and electrode
labels are superimposed.
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5 Discussion

In the following chapter, the methods introduced in the previous chapters are applied
to the datasets A and B. The resulting EGF maps (flow angle stability, streamline origins
density, sources) are examined and observations are discussed.

Three different modalities are considered for evaluation of the methods:

1. section 5.1: Discriminability between individual patients in atrial fibrillation

2. section 5.2: Discriminability between patients in sinus rhythm and patients in
atrial fibrillation

3. section 5.3: Discriminability between atrial fibrillation patients with recurrence
and those without

5.1 EGF Fingerprinting: Discriminability of Flow Maps

To estimate patient discriminability, I use cross-correlation as a measure of self-similarity.
Segments of flow frames are created from disjunct data from each patient and sub-
sequently used to independently generate the corresponding feature maps. These
are cross-correlated with other feature maps from the same and other patients. A
similarity matrix is generated from the mean pixel-wise correlation, from which a
mean correlation value for the same patient and different patient pairs can finally be
calculated. A large difference between these two values is desired.

While the recordings are divided into 60-second segments for atrial isolation, 2-
second segments are used for flow calculation, with an additional 2 seconds used for
flow initialization. Normally, these segments use the previous segment’s data for flow
initialization. To avoid initializing a flow field with data from another, which could
distort cross-correlations, every second segment is skipped so that there is no overlap.
The resulting feature maps can be re-aggregated using pixel-wise means to test for
temporal stability.

In the following tables, results are shown. Variables are named like map-typedataset
metric ,

where map-type indicates the name of the feature map, dataset indicates dataset A or B,
and metric indicates same patient or different patient similiarities, or the ratio thereof.

38



5 Discussion

Dataset A Dataset B

2s Aggregations
Same Patient fasa

same = 3.32e+04 fasb
same = 2.08e+04

Different Patient fasa
same = 2.35e+04 fasb

other = 1.53e+04
Ratio fasa

ratio = 1.41 fasb
ratio = 1.36

10s Aggregations
Same Patient fasa

same = 3.21e+04 fasb
same = 2.04e+04

Different Patient fasa
same = 2.34e+04 fasb

other = 1.51e+04
Ratio fasa

ratio = 1.37 fasb
ratio = 1.35

60s Aggregations
Same Patient fasa

same = 3.04e+04 fasb
same = 2.19e+04

Different Patient fasa
same = 2.31e+04 fasb

other = 1.59e+04
Ratio fasa

ratio = 1.32 fasb
ratio = 1.38

Table 5.1: Discriminability of flow angle stability (FAS) maps between patients. Each
entry represents a mean cross-correlation either between recordings of the
same patient, or recordings of different patients.

Dataset A Dataset B

2s Aggregations
Same Patient soda

same = 4.23e−10 sodb
same = 4.87e−10

Different Patient soda
other = 2.86e−10 sodb

other = 2.97e−10
Ratio soda

ratio = 1.48 sodb
ratio = 1.64

10s Aggregations
Same Patient soda

same = 4.31e−10 sodb
same = 4.94e−10

Different Patient soda
other = 2.91e−10 sodb

other = 3.02e−10
Ratio soda

ratio = 1.48 sodb
ratio = 1.64

60s Aggregations
Same Patient soda

same = 4.25e−10 sodb
same = 4.87e−10

Different Patient soda
other = 2.94e−10 sodb

other = 3.00e−10
Ratio soda

ratio = 1.45 sodb
ratio = 1.63

Table 5.2: Discriminability of streamline origins density (SOD) maps between patients.
Each entry represents a mean cross-correlation either between recordings of
the same patient, or recordings of different patients.
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Dataset A Dataset B

2s Aggregations
Same Patient sourcesa

same = 3.72e−05 sourcesb
same = 6.65e−05

Different Patient sourcesa
other = 9.88e−06 sourcesb

other = 3.05e−05
Ratio sourcesa

ratio = 3.76 sourcesb
ratio = 2.18

10s Aggregations
Same Patient sourcesa

same = 3.36e−05 sourcesb
same = 6.77e−05

Different Patient sourcesa
other = 9.99e−06 sourcesb

other = 3.12e−05
Ratio sourcesa

ratio = 3.36 sourcesb
ratio = 2.17

60s Aggregations
Same Patient sourcesa

same = 2.96e−05 sourcesb
same = 7.02e−05

Different Patient sourcesa
other = 1.05e−05 sourcesb

other = 3.19e−05
Ratio sourcesa

ratio = 2.82 sourcesb
ratio = 2.20

Table 5.3: Discriminability of source maps between patients. Each entry represents
a mean cross-correlation either between recordings of the same patient, or
recordings of different patients.

5.1.1 Observations

Metrics were tested for both datasets using 2-second, 10-second, and 30-second aggre-
gations. The results are shown in Table 5.1, Table 5.2 and Table 5.3.

All calculated ratios of similarity between same patient and different patient pairs
means were significantly above 1, indicating that patient-specific information is con-
tained in at least a subset of the feature maps. The ratios were highest for source maps
(max(sourcesa

ratio) = 3.76), suggesting that this type of map may be best suited for ECG
estimated from body surface electrodes.

Aggregation of multiple maps using means did not result in better cross-correlation
ratios between same patient pairs and different patient pairs for all 3 flow maps tested.
This suggests that data do not need to be aggregated for longer than 2 seconds. One
possible improvement in discriminative ability that has not been tested is the use of
a subset of segments to calculate the metrics. Because drivers are transient, some
segments may not contain information about drivers that are critical for maintaining
AFib.
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5.2 Patterns of the Sinoatrial Node

To understand and test EGF maps on the body surface, a test using patients in sinus
rhythm is useful. These patients have only one active pacemaker: the SA node. When
mapping EGF and looking for sources, I hypothesized that exactly one source should
be visible.

In contrast to AFib patients, there is an AV association in patients in SR. In other
words, in these patients, the atria are active only just before ventricular contraction.
Since the QRS cancellation algorithm cancels all signals that are synchronised with the
R peaks, this step of atrial isolation must be adjusted to account for this fact. To achieve
this, I added a time range before each R peak that is not cancelled along the ventricular
component (Figure 5.1).

Figure 5.1: Preservation of the p-wave in a patient in sinus rhythm. The blue line shows
the superimposed P-QRS-T complexes before cancellation, and the orange
line shows the same time ranges after cancellation.

Figure 5.2: Atrial Signal Isolation in sinus rhythm patients. The graph shows an
example electrode after the adjusted atrial signal isolation algorithm was
applied.

After atrial isolation, the resulting signal is mostly a flat line, with the exception of
the preserved P waves (Figure 5.2. In other sections, some noise remains that cannot be
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readily attributed to a single component.
As an adjunct to the dataset A, seven recordings were acquired from healthy patients.

I used these recordings to create EGF maps to test the hypothesis. Two example maps
are shown here (Figure 5.3 and Figure 5.4).

Figure 5.3: (1) 1-minute aggregated source maps of the same patient during SR. In both
maps, one source can be observed.

In both examples, a source can be observed between electrodes A7 and B7 in multiple
independently processed recordings. These positions correspond to the patient’s lower
right back.

In addition, in the second patient (Figure 5.4), a second source can be observed
between electrodes E2 and E3. These positions correspond to the upper left front
of the patient. Given that this position is opposite of the first when tracing a vector
through the position of the atrium, the projection of atrial activity results in similar,
yet mirrored traces. I hypothesize that both observed sources are the same inside the
atrium, observed from two opposite angles.
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Figure 5.4: (2) 1-minute aggregated source maps of the same patient during SR. In both
maps, two sources can be observed.

In all of the 7 patients, sources in either of these two locations can be observde.
However, this is not true for all recordings of the patients. In particular, in some
patients, these sources can be observed in nearly all recrodings, while for others, highly
variable EGF maps are produced. I attribute this observation to potential sources of
noise in the remainder of the signal, and postulate it should be possible to further
optimize components of the pipeline, or hyperparameters thereof, to generate more
consistent EGF maps. An example of a test which was not performed in this thesis is
only considering the time ranges of p-waves for analysis, rather than using ventricular
cancellation to negate its potential effects on the resulting flow maps.

To quantify discriminability of AFib versus SR patients, I performed cross-correlation
analyses similar to those performed in section 5.1 (Table 5.4). I used source maps, as
those previously had the highest ratio of discriminability between individual patients.

Some modifications to the method need to be introduced to avoid distorting the
results. First, an equal number of healthy and non-healthy should be used to balance
the labels. A random subselection of seven AFib patients were used. Second, flow
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Dataset A

2s Aggregations
Same Patient sourcesah

same = 3.59e−05
Different Patient sourcesah

same = 2.29e−05
Ratio sourcesah

ratio = 1.56

10s Aggregations
Same Patient sourcesah

same = 3.57e−05
Different Patient sourcesah

same = 2.29e−05
Ratio sourcesah

ratio = 1.56

60s Aggregations
Same Patient sourcesah

same = 3.57e−05
Different Patient sourcesah

same = 2.22e−05
Ratio sourcesah

ratio = 1.61

Table 5.4: Discriminability of sinus rhythm patients using source maps.

maps were only compared for different patients of the same rhythm. Otherwise, results
might be distorted by the fact that same-patient feature maps may be self-similar.
sourcessame therefore indicates mean cross-correlations between different patients of
the same rhythm, and sourcesother indicates mean cross-correlations between different
patients of different rhythms.

The variable sourcessame did not change significantly when multiple segments are
aggregated using means. This indicates that feature maps need not be aggregated to dis-
criminate between patient rhythms. Another important observation is that sourcesratio is
significantly higher for same patient cross-correlations (as shown in section 5.1) than for
same rhythm cross-correlations (max(sourcesa

ratio) = 3.76 vs max(sourcesah
ratio) = 1.61).

This suggests that feature maps are more self-similar for recordings of the same patient
than recordings of different patients in the same rhythm.
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Figure 5.5: Distance matrix for source maps for patients in sinus rhythm, created using
60 second aggregations. The diagonal is colorless because they indicate
cross-correlations between a source map and itself.

The distance matrix created for healthy patients (Figure 5.5) shows the cross-correlation
similarity between nine source maps for each healthy patient. It can be observed that
most of the source maps show increased correlation with other source maps generated
from the same patient. The maps of four patients also correlate with each other. Maps
of one patient correlate only with other maps of the same patient, while most maps of
two other patients do not correlate significantly with any other source maps.

5.3 Correlation to Outcome

The primary endpoint considered in this thesis is spontaneous termination of AFib
during ablation. This information was available in Dataset B. I hypothesized that if
AFib drivers critical for maintaining AFib were located in the atria, a PVI would not
isolate the sources and thus terminate AFib. However, if focal impulses were located in
the PVs, a PVI would isolate them, and AFib would terminate.

I additionally hypothesized that sources located in the atria would be visible from
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body surface EGF maps. These maps were designed based on expert knowledge and
findings of previous research. To test predictiveness, feature maps were aggregated
using maximum or mean. Metrics of multiple recordings of the same patient were
aggregated using mean. The predictive power was then tested using point-biserial
correlation rpb and AUC calculated from false positive and true positive rates.

The best predictors for spontaneous termination were streamline origin density mean
(rpb = 0.54, AUC = 0.80), flow angle stability mean (rpb = 0.46, AUC = 0.82) and
source map maximum (rpb = 0.45, AUC = 0.78). A graph of all 3 metrics is shown in
Figure 5.6.

Figure 5.6: The 3 best predictors of spontaneous termination of atrial fibrillation created
from aggregations of flow maps.

In addition to metrics collected from EGF maps, I collected metrics defined in
previous papers and calculated them on isolated atrial component leads. The same
signal was used that was also used to calculate EGF maps. Tested metrics were
F-Wave magnitude mean [Nau+09], Nondipolar Component Index (NDI) [Meo+18],
hjorth parameters [Hjo70], dominant frequency, organization index [Lan+16] and RQA
parameters.

The 3 best predictors for spontaneous termination were organization index (rpb = 0.37,
AUC = 0.77), RQA vertical entropy (rpb = 0.35, AUC = 0.70) and F-Wave magnitude
mean (rpb = −0.30, AUC = 0.67). A graph of all 3 metrics is shown in Figure 5.7.
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The collected EGF metrics therefore outperform previously proposed single-lead ECG
metrics.

Figure 5.7: The 3 best predictors of spontaneous termination of atrial fibrillation from
single-lead ECG metrics.

Another desirable quality of metrics collected prior to ablation is correlation to
long-term recurrence. In both datasets, 12-month recurrence labels were available. I
hypothesized that if drivers critical to maintaining AFib were located in the atria, a PVI
would not suffice as treatment, and the AFib should recur.

The predictive power of metrics for 12-month recurrence was also tested using
point-biserial correlation rpb.

The three best EGF-based predictors for dataset A were source mean (rpb = 0.34,
AUC = 0.67), FAS mean (rpb = 0.32, AUC = 0.65) and SOD mean (rpb = 0.24, AUC
= 0.56). The three best EGF-based predictors for dataset B were streamline origin
density mean (rpb = 0.22, AUC = 0.59), source map mean (rpb = 0.21, AUC = 0.59),
and flow angle stability mean (rpb = 0.18, AUC = 0.60). Graphs of all best predictors
are shown in Figure 5.8.
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Figure 5.8: The 3 best predictors of recurrence created from aggregations of flow maps
for the datasets A (left) and B (right).

I also compared the recurrence predictors with the previously proposed single-lead
ECG metrics to test predictive performance. The top three predictors in dataset A were
dominant frequency (rpb = 0.23, AUC = 0.62), diagonal entropy (rpb = −0.23, AUC
= 0.67) and RQA determinism (rpb = −0.19, AUC = 0.74). The three best predictors
in dataset B were F-Wave magnitude mean (rpb = −0.48, AUC = 0.77), RQA vertical
entropy (rpb = 0.42, AUC = 0.71) and RQA recurrence (rpb = 0.41, AUC = 0.74).
Graphs of all best predictors are shown in Figure 5.9.

Figure 5.9: The 3 best predictors of recurrence from single-lead ECG metrics for the
datasets A (left) and B (right).
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6 Conclusion

In this thesis, I tested the hypothesis of whether drivers of atrial fibrillation can be
mapped from dense body surface electrodes using electrographic flow. To achieve this,
I introduced a pipeline capable of separating atrial signals and then used the separated
atrial component to generate three types of EGF maps. I tested the performance
of the pipeline using several methods: First, the discriminability between patients.
Second, discriminability between heart rhythms. Third, predictiveness for spontaneous
conversion during subsequent ablations. Fourth, the preditiveness for long-term
recurrence of atrial fibrillation after a PVI.

The calculated feature maps all showed significant discriminability between patients,
with source maps for 2-second flow maps in dataset A performing best (sourcesa

ratio =

3.76).
Self-similarity of patients with SR versus patients with AFib was also demonstrated.

Here, the best-performing cross-correlation similarity metric were 2-second source
maps (sourcesah

ratio = 1.61).
Metrics created from aggregates of all three types of flow maps were able to outper-

form previously proposed single-lead ECG metrics for the prediction of spontaneous
termination of AFib during ablation. The best performing metric, flow angle stability
mean, achieved an AUC of 0.82. I conclude that EGF is well suited for this task.

Results for prediction of recurrence were inconclusive. EGF-based metrics were able
to outperform the previously proposed parameters in the smaller dataset A. However,
they were outperformed in the larger dataset B. I conclude that a larger-scale study
with more rigorous monitoring or different endpoints may be needed. However, there
are many factors that could lead to a recurrence or lack thereof. It is possible that
EGF-based metrics may complement previously proposed single-lead metrics.

I conclude that EGF is suitable for mapping atrial fibrillation on the body surface.
This eliminates the need for expensive and invasive CT scans to perform inverse
projections. Hopefully, with future optimizations, this method can be perfected and
used to guide treatment, ablation, or risk assessment.
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6 Conclusion

6.1 Future Work

The conclusions drawn from this thesis are limited in several ways.
First, the algorithm for isolating atrial signals consists of many techniques, some

of which are already proven, while others were presented for the first time in this
thesis. For each, one could define quantification analyses and perform more in-depth
hyperparameter optimization. However, ground truth knowledge of perfect separation
is difficult to define. Simple superimposition of generated signals is arbitrary and may
not represent real-world data. Another option is to use simulated data using software
such as OpenCARP.

Second, the data set for healthy patient recordings was limited in number of patients,
and therefore conclusions drawn from it may not be generalizable. A larger dataset
could be collected and a more detailed analysis could be performed. It may be possible
to derive additional information from these data, such as the presence of low voltage
areas. This information could serve as a measure of the risk of developing atrial
fibrillation, as previous studies have shown their role in maintaining AFib [McG+14;
Lau+17; Pla17; Sah+18; Nad+04].

Third, the recurrence labels did not adhere to the standards recommended in an
expert consensus [Cal+17]. In addition, the labels are not interchangeable with the
presence of intracardiac arrhythmia drivers. A modality other than recurrence could be
used as ground truth to meaningfully predict this fact. One possible modality would
be the recording of body surface electrodes during an invasive intervention. Possible
labels could be based on intracardiac electrodes or whether a PVI terminates AFib.

Finally, future studies could improve the cost-effectiveness of the analysis. Dataset A
used 64 electrodes and Dataset B used 240. It is not clear whether 240 electrodes are
required. In addition, it could be investigated whether a subset of these on smaller
areas of the torso would be sufficient. Reduced time and resources could significantly
improve adaptability in clinical settings.
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.1 A Complete Example of Atrial Signal Isolation

Here, a complete example of the atrial isolation algorithm is presented. The all-channel
average subtraction step is omitted because the used amplifier (TMSi Refa) performs
an all-channel average subtraction as part of the recording process.

Processing steps are provided as images of voltages over time. The x-axis represents
time, in seconds, to a total of 4 plotted seconds. The y-axis represents individual
electrodes. The values, in millivolt, are shown in the colormap for each image.

Figure .1: Input Signal

Figure .2: Zero-Centering

Figure .3: Mains Hum Correction

52



Figure .4: Ventricular Cancellation

Figure .5: Baseline Wander Correction

Figure .6: Lowpass
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Glossary

Antiarrhythmic Drug (AAD) AADs are a group of pharmaceuticals that are used to
suppress abnormal rhythms of the heart. . 1, 2, 8

Atrial Fibrillation (AFib) is a disorder of the heart that produces irregular, often rapid
heartbeats without an apparent pattern. . 1, 2, 4–11, 13–15, 22, 29, 31, 40, 41, 43,
45, 47, 49, 50, 55

AUC Area under Curve. 9, 46–49

AV Atrioventricular. 2, 22, 41, 55

BS Body Surface. 3, 13

CA Catheter Ablation. 1, 2, 7, 8

CT Computed Tomography. 10, 49

DWT Discrete Wavelet Transformation. 21

Electrocardiagram (ECG) is timeseries data of electrical activity originating from the
heart. . 2–4, 9, 10, 12–14, 17, 20, 22, 40, 47–49

ECGI Electrocardiographic Imaging. 10

Electrographic Flow (EGF) is a novel technology [Bel+18] for the identification and
characterization of atrial fibrillation drivers in humans. It uses the Horn &
Schunck algorithm [HS81] to estimate optical flow based on intracardiac catheter
data. . 2–4, 11, 12, 31, 38, 41–43, 46, 47, 49

eGFR Estimated Glomerular Filtration Rate. 9

ESC European Society of Cardiology. 1

FAS Flow Angle Stability. 28, 32, 47

FFT Fast Fourier Transform. 20
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Glossary

Fibrillatory Wave (F-Wave) A fibrillatory wave is an excitation, as observed from
electrodes, that originates from the atria during atrial fibrillation. P-Waves,
which also originate in the atria, only exist per definition in SR patients and are
synchronized to ventricular excitation. . 10, 28, 46, 48

GP Ganglionated Plexi. 8

Cardioversion (CV) is a technique for restoring SR in AFib patients.. 1

LA Left Atrial. 9

LGE-MRI Late Gadolinium Enhanced Magnetic Resonance Imaging. 9

NDI Nondipolar Component Index. 46

PCA Principal Component Analysis. 11

PV Pulmonary Vein. 2, 7, 8, 10, 11, 45

PVC Premature Ventricular Contraction. 26

Pulmonary Vein Isolation (PVI) is an invasive intervention where the pulmonary
veins are electrically isolated from the atria. . 2, 3, 6–8, 13, 14, 45, 47, 49,
50

Quality of Life (QOL) : "an individual’s perception of their position in life in the
context of the culture and value systems in which they live and in relation to their
goals, expectations, standards and concerns." (WHO). . 1, 8

RBF Radial Basis Function. 28

RQA Recurrence Quantification Analysis. 11, 46, 48

SA Sinoatrial. 1, 2, 5, 55

SOD Streamline Origin Density. 34, 47

Sinus Rhythm (SR) The common state of ventricular contractions. The SA node
generates signal, which propagates through the atria to the AV node and further
causes ventricular contraction. . 1, 7, 41–43, 49, 55

STD Standard Deviation. 11
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